向量和矩阵的范数的若干难点导引矩阵范数的定义 引入矩阵范数的原因与向量范数的理由是相似的,在许多场合需要“测量”矩阵的“大小”,比如矩阵序列的收敛,解线性方程组时的误差分析等,具体的情况在这里不再复述。最容易想到的矩阵范数,是把矩阵可以视为一个维的向量(采用所谓“拉直”的变换),所以,直观上可用上的向量范数来作为的矩阵范数。比如在范数意义下,; (1.1)在-范数意义下, (1.2)注意这里为了避免与以后的记号混淆,下标用“F”,这样一个矩阵范数,称为Frobenius范数,或F-范数。可以验证它们都满足向量范数的3个条件。那么是否矩阵范数就这样解决了?因为数学上的任一定义都要与其对象的运算联系起来,矩阵之间有乘法运算,它在定义范数时应予以体现,也即估计的“大小”相对于的“大小”关系。定义1 设,对每一个,如果对应着一个实函数,记为,它满足以下条件:(1)非负性:; (1a)正定性:(2)齐次性:;(3)三角不等式:则称为的广义矩阵范
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。