蕴含数列中的数学思想方法 山东省五莲一中 王振香数列是高中数学的重要内容之一,与其它数学知识有着广泛、密切而又深入的交汇,这类数列综合问题往往蕴含着许多重要的数学思想与方法(如函数思想、方程思想、分类讨论、化归与转化思想、归纳猜想等),在分析与处理解决时,若能灵活地以这些数学思想与方法作思路指导,则会取得事半功倍的效果.一 函数思想由于数列是以正整数为自变量的一种特殊离散型函数,则我们若能有意识地多从函数的角度去看待数列,在这种整体的、动态的观点之下加强数列与函数的联系,利用函数的图象和性质去解决数列的一系列问题,就会使数列的一些性质显现得更加清楚,使某些问题得到更好地解决.例1已知数列是等差数列,若,求.分析:因是等差数列,则知也为等差数列,由此可用一次函数的方法解决问题.解:,故为等差数列,其通项为一次函数,将之设为,则点、在其图象上,则解得.故,解之得.评注:是关于n的一次函数,其图象是直线上的离散点.上述解法是利用待定系数法建立一次函数来求解.当然更可利用结论“成等差数列”这个等差数列的重要结论