积分不等式的证明方法及其应用【摘要】本文根据定积分的定义、性质、定理等方面简单介绍了几个证明积分不等式的基本方法,并给出了相应的例题,从而更好地掌握其积分不等式的证明方法。尔后再给出四个重要积分不等式及其证明方法和应用,最后详细举例说明积分不等式在求极限、估计积分、证明积分不等式等上的应用及两个重要积分不等式的应用。【关键词】积分不等式 Schwarz不等式 Hlder不等式 Gronwall不等式 Young不等式1 引言 在学习中,我们常会遇到这样的问题:有些函数可积,但原函数不能用初等函数的有限形式来表达,或者说这种积分“积不出”,无法应用Newton-Leibniz公式求出(如),这时我们只能用其它方法对积分值进行估计,或近似计算;另一种情况是,被积函数是没有明确给出,只知道它的结构或某些性质(例如设函数在上连续可微,且,求),因此我们希望对积分值给出某种估计.为此我们来研究下积分不等式. 我们把含有定积分的不等式称为积分不等式.,都是积分不等式.2积分不等式的证明方法2.1 定义法我们根据定积分的定义,把积分区间等分,得出积分和,再