高二文科数学培优: 立体几何中二面角的求法编写:林洪兵2016-1-6一、定义法: 例1:如图1,设正方形ABCD-A1B1C1D!中,E为CC1中点,求截面A1BD和EBD所成二面角的度数。分析与解:本题可用定义法直接作出两截面A1BD、EBD所成二面角的平面角,设AC、BD交于O,连EO,A1O,由EB=ED,A1B=A1D即知EOBD,A1OBD,故EOA1为所求二面角的平面角。变式1:正方体ABCD-A1B1C1D1中,求二面角A-BD-C1的正切值为 .分析与略解:“小题”不必“大做”,由图1知所求二面角为二面角C-BD-C1的“补角”.教材中根本就没有“二面角的补角”这个概念,但通过几何直观又很容易理解其意义,这就叫做直觉思维,在立体几何中必须发展这种重要的思维能力.易知COC1是二面角C-BD-C1的平面角,且tanCOC1=。将题目略作变化,二面角A1-BD-C1的余弦值为 .在图1中,A1OC1是二面角A1-BD-C1的平面角,设出正方体