立体图形中的距离最短问题 根据新课程标准,培养学生的空间观念主要表现在:“能由实物的形状想像出几何图形,由几何图形想像出实物的形状,进行几何体与其三视图、展开图之间的转化;能根据条件做出立体模型或画出图形;”。空间图形的建立需要有一个循序渐进的过程,从小学到初中,再到高中,渐渐加强,作为一个初、高中的知识衔接模块,让学生在初中阶段能理解空间图形,特别是空间图形的展开图,夯实基础,显得尤为重要。立体图形上点点之间的距离最短问题, 通过把立体图形转化为平面图形,然后再运用“两点之间,线段最短”来解决。解决这一类距离最短的问题,可以利用轴对称或平移或旋转等几何图形的变换,把两条或多条线段和最短的问题转化为平面上两点之间的距离最短的问题来解决。一、通过平移来转化1.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm,3cm和1cm,A和B是这个台阶的两个相对的端点,A点上有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短线路是多少?析:展开图如图所示,AB= = 13cm二