第九章 多元函数微分法及其应用【教学目标与要求】1、 理解多元函数的概念和二元函数的几何意义。2、 了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。3、 理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。4、 理解方向导数与梯度的概念并掌握其计算方法。5、掌握多元复合函数偏导数的求法。6、会求隐函数(包括由方程组确定的隐函数)的偏导数。7、了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。8、了解二元函数的二阶泰勒公式。9、理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简多元函数的最大值和最小值,并会解决一些简单的应用问题。【教学重点】1、 二元函数的极限与连续性;2、 函数的偏导数和全微分;3、 方向导数与梯度的概念及其计算;4、 多元复合函数偏导数;5、 隐函数的偏导数;多元函数极值和条件极值的求法;6、 曲线的切线