第八章 电解质溶液一、基本内容电解质溶液属第二类导体,它之所以能导电,是因为其中含有能导电的阴、阳离子。若通电于电解质溶液,则溶液中的阳离子向阴极移动,阴离子向阳极移动;同时在电极/溶液的界面上必然发生氧化或还原作用,即阳极上发生氧化作用,阴极上发生还原作用。法拉第定律表明,电极上起作用的物质的量与通入的电量成正比。若通电于几个串联的电解池,则各个电解池的每个电极上起作用的物质的量相同。电解质溶液的导电行为,可以用离子迁移速率、离子电迁移率(即淌度)、离子迁移数、电导、电导率、摩尔电导率和离子摩尔电导率等物理量来定量描述。在无限稀释的电解质溶液中,离子的移动遵循科尔劳乌施离子独立移动定律,该定律可用来求算无限稀释的电解质溶液的摩尔电导率。此外,在浓度极稀的强电解质溶液中,其摩尔电导率与浓度的平方根成线性关系,据此,可用外推法求算无限稀释时强电解质溶液的极限摩尔电导率。为了描述电解质溶液偏离理想稀溶液的行为,以及解决溶液中单个离子的性质无法用实验测定的困难,引入了离子强度、离子平均活度、离子平均质量摩尔浓度和平均活度因子等概念。对稀溶液,活度因子的值可以用德拜休克尔极限