简单线性规划(导学案)【知识梳理】1.判别不等式表示的平面区域时,只要在直线的一侧任取一点(一般当直线不经过原点时,代入原点检验),将它的坐标代入不等式,如果该点坐标满足不等式,不等式就表示该点的平面区域,如果不满足不等式,就表示这个点所在区域的的平面区域。由几个不等式组成的不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分。2.不等式组是一组对变量x、y的约束条件,由于这组约束条件都是关于x、y的一次不等式,所以又可称其为线性约束条件.z=Ax+By是欲达到最大值或最小值所涉及的变量x、y的解析式,我们把它称为目标函数.由于z=Ax+By又是关于x、y的一次解析式,所以又可叫做线性目标函数. 另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.3.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这