函数单调性的判定方法1.判断具体函数单调性的方法 对于给出具体解析式的函数,由函数单调性的定义出发,本文列举的判断函数单调性的方法有如下几种:1.1 定义法 首先我们给出单调函数的定义。一般地,设为定义在上的函数。若对任何、,当时,总有(1),则称为上的增函数,特别当成立严格不等时,称为上的严格增函数;(2),则称为上的减函数,特别当成立严格不等式时,称为上的严格减函数。 给出函数单调性的定义,我们就可以利用函数单调性的定义来判定及证明函数的单调性。用单调性的定义判断函数单调性的方法叫定义法。利用定义来证明函数在给定区间上的单调性的一般步骤:(1)设元,任取,且;(2)作差;(3)变形(普遍是因式分解和配方);(4)断号(即判断差与0的大小);(5)定论(即指出函数 在给定的区间D上的单调性)。例1.用定义证明在上是减函数。证明:设,,且,则由于,则,即,所以在上是减函数。例2.用定义证明函数 在上的单调性。证明:设、,且,则,又 所以,当、时,此时函数为减函数;