初中与高中数学衔接中的因式分解高中数学中,式子的恒等变形是非常重要的数学变换,其中因式分解尤为重要。根据需要,在对一些式子整体分解或局部分解是高中数学学习中作为学生必须具备的基本技能,但由于初中阶段新的课程标准中对因式分解,较以往的标准降低了要求,所以刚上高中的学生来说,在学习数学中遇到或多或少的困难。为此,本文根据高中阶段所需要的有关因式分解的要求,将初中阶段所学的因式分解的基础上加以补充和拓宽。 现行的初中教材中,因式分解只介绍两种方法,即“提取公因式法”和“运用公式法”。实际因式分解还有两种方法需要掌握,即“十字相乘法”和“分组分解法”,而这两种方法在高中数学中都有用途,所以本文对因式分解的本质介绍的前提下,重点介绍后两种方法。一、因式分解的概念在现行初中教材中的因式分解的概念:把一个多项式化为几个整式的乘积形式。由概念不难看出,因式分解的本质就是经过恒等变形,将一个多项式化成几个整式的“乘积”的形式。所以过程是恒等变形,结果是化成“乘积”的形式,所以关键是如何进行恒等变形的问题。“提取公因式法”需要的过程是:将多项式每个项中所含的相同“结构”,即公因式