最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一求出动点轨迹,即可求出关于动点的最值本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有AMQAOP,QM:PO=AQ:AP=1:2【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AOQ点轨迹相当于是P点轨迹成比例缩放根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系