第二十九讲 由正难则反切入 人们习惯的思维方式是正向思维,即从条件手,进行正面的推导和论证,使问题得到解决但有些数学问题,若直接从正面求解,则思维较易受阻,而“正难则反,顺难则逆,直难则曲”是突破思维障碍的重要策略 数学中存在着大量的正难则反的切入点数学中的定义、公式、法则和等价关系都是双向的,具有可逆性;对数学方法而言,特殊与一般、具体与抽象、分析与综合、归纳与演绎,其思考方向也是可逆的;作为解题策略,当正向思考困难时可逆向思考,直接证明受阻时可间接证明,探索可能性失败时转向考察不可能性由正难则反切入的具体途径有:1 定义、公式、法则的逆用;2常量与变量的换位;3反客为主;4反证法等【例题求解】【例1】 已知满足,那么的值为 思路点拨 视为整体,避免解高次方程求的值【例2】 已知实数、满足,且求的值
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。