动点和最值问题基本图形:一:两定一动型(“两个定点,一个动点”的条件下求最值。例如上图中直线l的同侧有两个定点A、B,在直线l上有一动点)例1、 1、以正方形为载体如图,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形内,在对角线AC上有一动点P,使PD+PE的值最小,则其最小值是 23 2、以直角梯形为载体例2:如图,在直角梯形中,ADBC,ABBC,AD=2,BC=DC=5,点P在BC上移动,当PA+PD取得最小值时,APD中AP边上的高为 817/17 3、以圆为载体如图,AB、CD是半径为5的O的弦,AB=8,CD=6,MN为直径,ABMN于E,CDMN于F,P为EF上的任意一点,则PA+PC的最小值为 4、以直角坐标系为载体如图,一次函数y=kx+b的图像与x、y轴分别交于点A(2,0),B(0,4).(1)求函数的解析式.(2)O为坐标原点,设OA、AB的中点分别是C、D,P为OB上一动点,求PC+PD的最小值为y=-2x+4