参数思想及参数方法在解析几何中的应用当直接寻找变量x,y之间的关系显得很困难的时候,恰当地引入一个中间变量t(称之为参数),分别建立起变量x,y与参数t的直接关系,从而间接地知道了x与y之间的关系。这种数学思想即称之为“参数思想”。通过引入参数、建立参数方程求解数学问题的方法即称之为“参数方法”。参数思想和参数方法在解析几何中有着广泛的应用。比如利用参数方程可以求动点的轨迹问题,变量的范围及最值问题,定点和定值问题等等。运用参数方法的关键在于参数的选择,即如何引参(常见的引参方式有:点参数;斜率参数;截距参数;距离参数;比例参数;角参数;时间参数等。),然后通过必要的运算和推理,建立目标变量与参数的某种联系,最后又消去参数只保留目标变量而获解。解题时应注意参数范围的限定,以确保变形过程的等价性。一、知识概要1一般曲线的参数方程(t为参数)x,y分别是参数t的函数。2直线的参数方程设直线过定点P0(x0,y0),为其倾斜角,P(x、y)是上任一点,P0Pt(有向线段的数量),则直线的参数方程是,当P点在P0的上方(右方)时t0;当P