米氏方程与双倒数作图法(Lineweaver-Burk plot)米氏方程(Michaelis-Menten Equation)或米曼氏动力学(Michaelis-Menten kinetics)是由Leonor Michaelis和Maud Menten在1913年提出,是中极为重要的可以描述多种非变异构酶动力学现象、表示一个酶促反应的起始速度V(有些资料中也称为Vo)与底物浓度S关系的速度方的方程,米氏方程形式如下:其中,Vmax表示酶被底物饱和时的反应速度,Km值称为米氏常数,是酶促反应速度V为最大酶促反应速度值一半时的底物浓度。在酶促反应中,底物情况在低浓度下,反应相对于底物是一级反应(first order reaction);而当底物浓度处于中间范围时,反应(相对于底物)是混合级反应(mixed order reaction);当底物浓度增加时,反应由一级反应向零级反应(zero order reaction)过渡;当底物浓度S逐渐增大时,速度V相对于S的曲线为一双曲线。下图为米氏方程的模拟作图:酶促反应中的米氏常数的测定和Vmax的测定有多种方