双曲线与方程【知识梳理】1、双曲线的定义(1)平面内,到两定点、的距离之差的绝对值等于定长的点的轨迹称为双曲线,其中两定点、称为双曲线的焦点,定长称为双曲线的实轴长,线段的长称为双曲线的焦距.此定义为双曲线的第一定义.【注】,此时点轨迹为两条射线.(2)平面内,到定点的距离与到定直线的距离比为定值的点的轨迹称为双曲线,其中定点称为双曲线的焦点,定直线称为双曲线的准线,定值称为双曲线的离心率.此定义为双曲线的第二定义.2、双曲线的简单性质标准方程顶点坐标焦点坐标左焦点,右焦点上焦点,下焦点虚轴与虚轴实轴长、虚轴长实轴长、虚轴长有界性,对称性关于轴对称,关于轴对称,同时也关于原点对称.3、渐近线双曲线的渐近线为,即,或.【注】与双曲线具有相同渐近线的双曲线方程可以设为;渐近线为的双曲线方程可以设为;共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线.共轭双曲线具有相同的渐近线.等轴双曲线:实轴与虚轴相等的双曲线称为等轴双曲线.4、