双曲线知识点1 双曲线定义:到两个定点F1与F2的距离之差的绝对值等于定长(|F1F2|)的点的轨迹(为常数)这两个定点叫双曲线的焦点要注意两点:(1)距离之差的绝对值.(2)2a|F1F2|,这两点与椭圆的定义有本质的不同.当|MF1|MF2|=2a时,曲线仅表示焦点F2所对应的一支;当|MF1|MF2|=2a时,曲线仅表示焦点F1所对应的一支;当2a=|F1F2|时,轨迹是一直线上以F1、F2为端点向外的两条射线;当2a|F1F2|时,动点轨迹不存在.动点到一定点F的距离与它到一条定直线l的距离之比是常数e(e1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l叫做双曲线的准线2.双曲线的标准方程:和(a0,b0).这里,其中|=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.4.求双曲线