否命题与否定命题的区别 “否命题”与“命题的否定”这两个概念,如果原命题是“若p则q”,那么这个命题的否命题是“若非p,则非q”,而这个命题的否定是“若p则非q”。可见,否命题既否定条件又否定结论,而命题的否定只否定结论。一个命题与它的否定形式是完全对立的。两者之间有且只有一个成立。 例1原命题:所有自然数的平方都是正数 原命题的标准形式:任意x,(若x是自然数,则x是正数) “任意”是限定词,“x是自然数”是条件,“x是正数”是结论。否定一个命题,需要同时否定它的限定词和结论。限定词“任意”和“存在”互为否定。 否定形式:不是(任意x,(若x是自然数,则x是正数)存在x,(若x是自然数,则x不是正数) 换一个说法就是:至少有一个自然数的平方不是正数 而一个命题的否命题用得较少。命题是否成立,与它的否命题是否成立,两者没有关系。 得到一个问题的否命题很容易,把限定词,条件,结论全部否定就可以了。 原命题:所有自然数的平方都是正数 原命题的标准形式:任意x,(若x是自然数,则x是正数) 否命题:存在x,(若x不是自然数,则x不是正数) 换一个