含参不等式恒成立问题中,求参数取值范围一般方法温州中学 叶昭蓉恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。一、 分离参数在给出的不等式中,如果能通过恒等变形分离出参数,即:若恒成立,只须求出,则;若恒成立,只须求出,则,转化为函数求最值。例1、已知函数,若对任意恒有,试确定的取值范围。解:根据题意得:在上恒成立,即:在上恒成立,设,则当时, 所以 在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若恒成立,只须求出,则,然后解不等式求出参数的取值范围;若恒成立,只须求出,则,然后解不等式求出参数的取值范围,问题还是转化为函数求最值。例2、已知时,不等式恒成立,求的取值范围。解:令, 所以原不等式可化为:,要使上式在上恒成立,只须求出在上的最小值即可。 二、 分类讨论在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用