含参不等式恒成立问题中-求参数取值范围一般方法3页.doc

上传人:晟*** 文档编号:6614270 上传时间:2021-09-10 格式:DOC 页数:3 大小:335.50KB
下载 相关 举报
含参不等式恒成立问题中-求参数取值范围一般方法3页.doc_第1页
第1页 / 共3页
含参不等式恒成立问题中-求参数取值范围一般方法3页.doc_第2页
第2页 / 共3页
含参不等式恒成立问题中-求参数取值范围一般方法3页.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

含参不等式恒成立问题中,求参数取值范围一般方法温州中学 叶昭蓉恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。一、 分离参数在给出的不等式中,如果能通过恒等变形分离出参数,即:若恒成立,只须求出,则;若恒成立,只须求出,则,转化为函数求最值。例1、已知函数,若对任意恒有,试确定的取值范围。解:根据题意得:在上恒成立,即:在上恒成立,设,则当时, 所以 在给出的不等式中,如果通过恒等变形不能直接解出参数,则可将两变量分别置于不等式的两边,即:若恒成立,只须求出,则,然后解不等式求出参数的取值范围;若恒成立,只须求出,则,然后解不等式求出参数的取值范围,问题还是转化为函数求最值。例2、已知时,不等式恒成立,求的取值范围。解:令, 所以原不等式可化为:,要使上式在上恒成立,只须求出在上的最小值即可。 二、 分类讨论在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。