(一)椭圆及其标准方程1. 椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于|这个条件不可忽视.若这个距离之和小于|,则这样的点不存在;若距离之和等于|,则动点的轨迹是线段.2.椭圆的标准方程:(0),(0).3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.4.求椭圆的标准方程的方法: 正确判断焦点的位置; 设出标准方程后,运用待定系数法求解.(二)椭圆的简单几何性质1. 椭圆的几何性质:设椭圆方程为(0). 范围: -axa,-bxb,所以椭圆位于直线x=和y=所围成的矩形里. 对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. 顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为