用均值不等式求最值的方法和技巧一、几个重要的均值不等式当且仅当a = b时,“=”号成立;当且仅当a = b时,“=”号成立;当且仅当a = b = c时,“=”号成立; ,当且仅当a = b = c时,“=”号成立.注: 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; 熟悉一个重要的不等式链:。一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。例 (1) 当时,求的最大值。 (2)已知,求函数的最大值。解: 。当且仅当,即时,上式取“=”。故。评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。例2 求函数的最大值。解:。因,当且仅当,即时,上式取“=”。故。评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。例3 已知,求函数的最大值。解:。当且仅当,即时,上式取“=”。