复变函数积分方法总结键入文档副标题acer选取日期 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。 arg z= 称为主值 - ,Arg=argz+2k 。利用直角坐标和极坐标的关系式x=rcos ,y=rsin,故z= rcos+i rsin;利用欧拉公式ei=cos+isin。z=rei。1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0 ,z1,zk-1,zk,zn=B,在每个弧段zk-1 zk(k=1,2n)上任取一点xk并作和式Sn=k-1nf(xk)(zk-zk-1)= k-1nf
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。