多元函数微分学一、 本章提要基本概念多元函数,二元函数的定义域与几何图形,多元函数的极限与连续性,偏导数,二阶偏导数,混合偏导数,全微分,切平面,多元函数的极值,驻点,条件极值,方向导数,梯度基本方法二元函数微分法:利用定义求偏导数,利用一元函数微分法求偏导数,利用多元复合函数求导法则求偏导数隐函数微分法:拉格朗日乘数法定理混合偏导数与次序无关的条件,可微的充分条件,复合函数的偏导数,极值的必要条件,极值的充分条件二、要点解析问题 比较一元函数微分学与二元函数微分学基本概念的异同,说明二元函数在一点处极限存在、连续、可导、可微之间的关系解析 多元函数微分学的内容是与一元函数微分学相互对应的由于从一元到二元会产生一些新的问题,而从二元到多元往往是形式上的类推,因此我们以二元函数为代表进行讨论如果我们把自变量看成一点,那么对于一元函数,点在区间上变化;对于二元函数,点将在一平面区域中变化这样,无论对一元、二元或多元函数都可以统一写成,它称为点函数利用点函数,我们可以把一元和多元函数的极限和连续