主要内容本章的中心内容是建立一种新的积分 勒贝格积分理论它也是实变函数数论研究的中心内容一、关于勒贝格积分的建立本章首先引入测度有限点集上有界函数的积分,这是全章的基础,建立有界函数的积分时应注意两点:一是黎曼积分意义下的积分区间,现已被一般点集所代替;二是分划的小区间长度,现已被点集的测度所代替 一般集合上一般函数的积分是通过两步完成的第一步是建立非负函数的积分它是通过非负函数表示为有界函数列的极限、把无穷测度集合表示为测度有限集列的极限来完成的第二步是建立一般函数的积分,它是将其分解两个非负函数(正部与负部)的差的办法来完成的二、勒贝格积分的性质勒贝格积分的性质主要反映在以下几个方面:(1)勒贝格积分是一种绝对收敛积分,即在上可积当且仅当在上可积(在上可测)这是它与黎曼积分重要区别之一(2)勒贝格积分的绝对连续性设在上可积,则对任意,存在,使当且 时,恒有(3)勒贝格积分的唯一性即的充要条件是于由此可知,若与几乎相等,则它们的可积性与积分值均相同(4)可积函数可用连续函数积分逼近设是可积函数,对任意,存在