导数应用之双变量问题 (一)构造齐次式,换元 【例】已知函数,曲线在点处的切线方程为.(1)求实数的值;(2)设分别是函数的两个零点,求证:.【解析】(1);(2),因为分别是函数的两个零点,所以, 两式相减,得, ,要证明,只需证. 思路一:因为,只需证.令,即证. 令,则,所以函数在上单调递减,即证.由上述分析可知.【规律总结】这是极值点偏移问题,此类问题往往利用换元把转化为的函数,常把的关系变形为齐次式,设等,构造函数来解决,可称之为构造比较函数法.思路二:因为,只需证,设,则 ,所以函数在上单调递减,即证.由上述分析可知.【规律总结】极值点偏移问题中,由于两个变量的地位相同,将待证不等式进行变形,可以构造关于(或)的一元函数来处理应用导数研究其单调性,并借助于单调性,达到待证不等式的证明此乃主元法. 【变式训练】 已知函数有两个不同的极值点x1,x2,且x1x2(1)求实数a的取值范围;(2)求证:x1x2a2【分析】(1)先求导数,再
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。