精品文档 导数的几何意义教学设计 导数的几何意义本节课教学指导思想与理论依据:微积分是人类思维的伟大成果之一,是人类经历了2500多年震撼人心的智力奋斗的结果,它开创了向近代数学过渡的新时期.它为研究变量与函数提供了重要的方法和手段导数的概念是微积分核心概念之一,它有极其丰富的实际背景和广泛的应用本节教材选自人教A版数学选修2-2第1章“导数及其应用”第一节“导数的几何意义”,是学生在学习了瞬时变化率就是导数之后的内容,通过这部分内容的学习,可以帮助学生更好的理解导数的概念及导数是研究函数的单调性、变化快慢和极值等性质最有效的工具,是本章的关键内容新课程标准要求,微积分教学“返璞归真”,把极限、连续、瞬时速度等概念,建立在朴素理解的基础上,直接由变化率问题得到导数的概念,进而研究导数的几何意义及导数在研究函数性质中的应用本节内容按照先突破一般曲线的切线定义;再结合旧知识“平均变化率表示割线的斜率”,学生对照动画探究“割线逼近切线割线的斜率逼近切线的斜率切线的斜率对应该点处的瞬时变化率即导数”的线索展开,从近似过渡到精确,通过图形直观逼近的方法消除学生对极限的神秘