容斥问题(一)容斥问题涉及到一个重要的原理包含与排除原理,也称为容斥原理,即当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分。这一讲我们先介绍容斥原理1对n个事物,如果采用两种不同的分类标准:按性质a分类与性质b分类(如图1),那么,具有性质a或性质b的事物的个数=Na+Nb-Nab。例1一个班有55名学生,订阅小学生数学报的有12人,订阅今日少年报的有9人,两种报纸都订阅的有5人。(1)订阅报纸的总人数有多少?(2)两种报纸都没订阅的有多少人?例2一个旅行社有36人,其中会英语的有24人,会俄语的有18人,两样都不会的有4人,两样都会的有多少人?例3在1到100的全部自然数中,既不是6的倍数也不是5的倍数的数有多少个?例4艺术节那天,学校的画廊里展了了每个年级学生的图画作品,其中有23幅画不是五年级的,有21幅画不是六年级的,五、六年级参展的画共有8幅。其他年级参展的画共有多少幅? 练习与思考1.将边长分别为4厘米和5厘米的正方形纸片部分重叠,盖在桌面上(如图6),已知重叠的