数论50题1 由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】 各位数字和为1+3+4+5+7+8=28所以偶数位和奇数位上数字和均为14为了使得该数最大,首位必须是8,第2位是7,14-8=6那么第3位一定是5,第5位为1该数最大为875413。2 请用1,2,5,7,8,9这六个数字(每个数字至多用一次)来组成一个五位数,使得它能被75整除,并求出这样的五位数有几个?【分析】 75=325若被3整除,则各位数字和是3的倍数,1+2+5+7+8+9=32所以应该去掉一个被3除余2的,因此要么去掉2要么去掉8先任给一个去掉8的,17925即满足要求1) 若去掉8则末2位要么是25要么是75,前3位则任意排,有3!=6种排法因此若去掉8则有2*6=12个满足要求的数2) 若去掉2则末2位只能是75,前3位任意排,有6种排法所以有6个满足要求综上所述,满足要求的五位数有18个。3 已知道六位数20279是13的倍数,求中的数字是几?【分析】 根据被1