平面向量中的三角形四心问题向量是高中数学中引入的重要概念,是解决几何问题的重要工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。1、 重心(barycenter)三角形重心是三角形三边中线的交点。重心到顶点的距离与重心到对边中点的距离之比为2:1。在重心确定上,有著名的帕普斯定理。结论1:结论2:二、垂心(orthocenter)三角形的三条高线的交点叫做三角形的垂心。结论3:结论4:三、外心(circumcenter) 三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。结论5:结论6:四、内心(incenter) 三角形三条内角平分线的交点叫三角形的内心。即内切圆的圆心。结论7:结论8:
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。