微专题之等和线(共3页).doc

上传人:晟*** 文档编号:6760652 上传时间:2021-09-13 格式:DOC 页数:3 大小:330KB
下载 相关 举报
微专题之等和线(共3页).doc_第1页
第1页 / 共3页
微专题之等和线(共3页).doc_第2页
第2页 / 共3页
微专题之等和线(共3页).doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

微专题之平面向量基本定理系数的等和线【适用题型】在平面向量基本定理的表达式中,研究两系数的和差及线性表达式的范围与最值。【基本定理】(一) 平面向量共线定理 已知,若,则三点共线;反之亦然(二) 等和线 平面内一组基底及任一向量,若点在直线上或者在平行于的直线上,则(定值),反之也成立,我们把直线以及与直线平行的直线称为等和线。(1) 当等和线恰为直线时,;(2) 当等和线在点和直线之间时,;(3) 当直线在点和等和线之间时,;(4) 当等和线过点时,;(5) 若两等和线关于点对称,则定值互为相反数;【解题步骤及说明】1、 确定等值线为1的线;22、 平移(旋转或伸缩)该线,结合动点的可行域,分析何处取得最大值和最小值;3、 从长度比或者点的位置两个角度,计算最大值和最小值;说明:平面向量共线定理的表达式中的三个向量的起点务必一致,若不一致,本着少数服从多数的原则,优先平移固定的向量;若需要研究的两系数的线性关系,则需要通过变换基底向量,使得需要研究的代数式为基底的系数和。【典型例题】例1、 给定两个长度为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。