用微积分理论证明不等式的方法江苏省扬中高级中学 卞国文 212200 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量)对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式一、用导数定义证明不等式法1证明方法根据导数定义导数定义:设函数在点的某个邻域内有定义,若极限存在,则称函数在可导,称这极限为函数在点的导数,记作2证明方法:(1)找出,使得恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究3例例1:设函数,其中都为实数,为正整数,已知对于一切实数,有,试证:分析:问题中