第1章 函数,极限与连续第1节 函数注:函数是高中的重点知识,以下是高中函数全部重点,篇幅有点长,供查阅。一、函数的概念与表示1、映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:AB。注意点:判断一个对应是映射的方法:可多对一,不可一对多,都有象,象唯一.2、函数:如果A,B都是非空的数集,那么A到B的映射f:AB就叫做A到B的函数,记作,其中.原像的集合A叫做函数的定义域.由所有象f(x)构成的集合叫做的值域,显然值域是集合B的子集.构成函数概念的三要素: 定义域(x的取值范围)对应法则(f)值域(y的取值范围)两个函数是同一个函数的条件:定义域和对应关系完全一致.二、函数的定义域、解析式与值域1、求函数定义域的主要依据:(1)整式的定义域是全体实数;(2)分式的分母不为零;(3)偶次方根的被开方数大于等于零;(4)零取零次方没有意义(零指数幂的底数不为0);(5)对数函