控制图的基本原理质量特性数据具有波动性,在没有进行观察或测量时,一般是未知的,但其又具有规律性,它是在一定的范围内波动的,所以它是随机变量。一、正态分布如果随机变量受大量独立的偶然因素影响,而每一种因素的作用又均匀而微小,即没有一项因素起特别突出的影响,则随机变量将服从正态分布。正态分布是连续型随机变量最常见的一种分布。它是由高斯从误差研究中得出的一种分布,所以也称高斯分布。随机变量服从正态分布的例子很多。一般来说,在生产条件不变的前提下,产品的许多量度,如零件的尺寸、材料的抗拉强度、疲劳强度、邮件的内部处理时长、随机测量误差等等都是如此。定义 若随机变量的概率密度函数为:则称的分布为正态分布,记为 。正态分布的概率密度函数如图51所示。图5-l 正态分布概率密度曲线从图中我们叫以看出正态分布有如下性质:(1)曲线是对称的,对称轴是x=;(2)曲线是单峰函数,当x=时取得最大值;(3)当曲时,曲线以x轴为渐近线;(4)在处,为正态分布曲线的拐点;(5)曲线与x轴围成的面积为1。另外,正态分布的