SVM有如下主要几个特点:(1)映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的映射;(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。(4)SVM 是一种有坚实理论基础的新颖的小样本学习方法。它基本上不涉及概率测度及大数定律等,因此不同于现有的统计方法。从本质上看,它避开了从归纳到演绎的传统过程,实现了高效的从训练样本到预报样本的“转导推理”,大大简化了通常的分类和回归等问题。(5)SVM 的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。(6)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单,而且具有较好的“鲁棒”性。这种“鲁棒”性主要体现在:增、删非支持向量样本对模型没有影响;支持向量样本集具有一定的鲁棒性;有些成功的应用中,SVM 方法对核的选取不敏感两个不足:(1) SVM算法对