一、错位相减法设数列的等比数列,数列是等差数列,则数列的前项和求解,均可用错位相减法。例1;设是等差数列,是各项都为正数的等比数列,且,()求,的通项公式;()求数列的前n项和例2;在数列中,其中()求数列的通项公式;()求数列的前项和;二、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1) (2)(3)等。例3:; 求数列的前n项和.数列求和(错位相减、裂项相消法)专题训练1、2、已知等差数列满足:,.的前n项和为.()求 及;()令(),求数列的前n项和.3、已知等差数列的前3项和为6,前8项和为-4。()求数列的通项公式;w_w w. k#s5_u.c o*()设,求数列的前n项和4、已知等差数列满足:,的前n项和为()求及;()令bn=(nN*),求
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。