数列型不等式放缩技巧八法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一 利用重要不等式放缩1 均值不等式法例1 设求证解析 此数列的通项为,即 注:应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式,若放成则得,就放过“度”了! 根据所证不等式的结构特征来选取所需要的重要不等式,这里 其中,等的各式及其变式公式均可供选用。 例2 已知函数,若,且在0,1上的最小值为,求证:(02年全国联赛山东预赛题) 简析 例3 已知为正数,且,试证:对每一个,.(88年全
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。