数列求和方法及巩固7页.doc

上传人:晟*** 文档编号:6814364 上传时间:2021-09-13 格式:DOC 页数:7 大小:298.50KB
下载 相关 举报
数列求和方法及巩固7页.doc_第1页
第1页 / 共7页
数列求和方法及巩固7页.doc_第2页
第2页 / 共7页
数列求和方法及巩固7页.doc_第3页
第3页 / 共7页
数列求和方法及巩固7页.doc_第4页
第4页 / 共7页
数列求和方法及巩固7页.doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

数列求和的方法1、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n项和的公式来求.等差数列求和公式:等比数列求和公式:常见的数列的前n项和:, 1+3+5+(2n-1)=,等.2、倒序相加法:类似于等差数列的前n项和的公式的推导方法。如果一个数列,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。这一种求和的方法称为倒序相加法.例1、 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边(2)利用第(1)小题已经证明的结论可知,两式相加得: 所以.小结:解题时,认真分析对某些前后具有对称性的数列,可以运用倒序相加法求和.针对训练3、求值:3、错位相减法:类似于等比数列的前n项和的公式的推导方法。若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差比”数列,则采用错位相减法.若,其中是等差数列,是公比为等比

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。