求极限的方法具体方法利用函数极限的四则运算法则来求极限定理1:若极限和都存在,则函数, 当时也存在且 又若,则在时也存在,且有利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如、等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。例1:求解:原式=用两个重要的极限来求函数的极限利用来求极限的扩展形为:令,当或时,则有或例2: 解:令t=.则sinx=sin( t)=sint, 且当时 故 例3:求解:原式=利用来求极限的另一种形式为.事实上,令所以例4: 求的极限解:原式=利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。利用等价无穷小量代换来求极限所谓等价无穷小量即称与是时的等价无穷小量,记作定
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。