第七章 岭回归1. 岭回归估计是在什么情况下提出的?答:当解释变量间出现严重的多重共线性时,用普通最小二乘法估计模型参数,往往参数估计方差太大,使普通最小二乘法的效果变得很不理想,为了解决这一问题,统计学家从模型和数据的角度考虑,采用回归诊断和自变量选择来克服多重共线性的影响,这时,岭回归作为一种新的回归方法被提出来了。2. 岭回归估计的定义及其统计思想是什么?答:一种改进最小二乘估计的方法叫做岭估计。当自变量间存在多重共线性,XX0时,我们设想给XX加上一个正常数矩阵kI(k0),那么XX+kI 接近奇异的程度小得多,考虑到变量的量纲问题,先对数据作标准化,为了计算方便,标准化后的设计阵仍然用X表示,定义为 ,称为的岭回归估计,其中k称为岭参数。3. 选择岭参数k有哪几种主要方法?答:选择岭参数的几种常用方法有1.岭迹法,2.方差扩大因子法,3.由残差平方和来确定k值。4. 用岭回归方法选择自变量应遵从哪些基本原则?答:用岭回归方法来选择变量应遵从的原则有:(1)在岭回归的计算中,我们假定设计矩阵X已经中心化和标准化了,这