正弦定理正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即= =2R(R为ABC外接圆半径) 1直角三角形中:sinA= ,sinB=, sinC=1 即c=, c= , c= =2斜三角形中 证明一:(等积法)在任意斜ABC当中SABC= 两边同除以即得:=证明二:(外接圆法)如图所示,同理 =2R,2R证明三:(向量法)过A作单位向量垂直于由+= 两边同乘以单位向量 得 (+)=则+=|cos90+|cos(90-C)=|cos(90-A) =同理,若过C作垂直于得: = =正弦定理的应用 从理论上正弦定理可解决两类问题: 1两角和任意一边,求其它两边和一角;2两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b和A, 用正弦定理求B时的各种情况:若A为锐角时:若A为直角或钝角时:三、讲解范例:
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。