梅涅劳斯定理【定理内容】如果一条直线与的三边、或其延长线交于、点,那么.评等价叙述:的三边、或其延长线上有三点、,则、三点共线的充要条件是。三点所在直线称为三角形的梅氏线。【背景简介】梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。【证法欣赏】证法1:(平行线分线段成比例)证:如图,过作交延长线于,又则证法2:(正弦定理)证:如图,令,在中,由正弦定理知:,同理,即.【逆定理】梅涅劳斯定理的逆定理也成立,即如果有三点、分别在的三边、或其延长线上,且满足,那么、三点共线。注利用梅涅劳斯定理的逆定理可判定三点共线【定理应用】梅涅劳斯定理的应用定理1:若的的外角平分线交边延长线于,的平分线交边于,的平分线交边于,则、三点共线。证:由三角形内、外角平分线定理知, , 则,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。