求数列的前n项和一.用倒序相加法求数列的前n项和如果一个数列an,与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。例题1:设等差数列an,公差为d,求证:an的前n项和Sn=n(a1+an)/2解:Sn=a1+a2+a3+.+an 倒序得:Sn=an+an-1+an-2+a1+得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+(an+a1)又a1+an=a2+an-1=a3+an-2=an+a12Sn=n(a2+an)Sn=n(a1+an)/2点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+an=a2+an-1=a3+an-2=an+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。二.用公式法求数列的前