求数列前N项和的常用方法核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。一.用倒序相加法求数列的前n项和如果一个数列an,与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。例题1:设等差数列an,公差为d,求证:an的前n项和Sn=n(a1+an)/2解:Sn=a1+a2+a3+.+an 倒序得:Sn=an+an-1+an-2+a1 +得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+(an+a1)又a1+an=a2+an-1=a3+an-2=an+a12Sn=n(a2+an) Sn=n(a1+an)/2