求阴影面积的常用方法游金明 郑海梅 周玉梅 计算平面图形的面积问题是常见题型,求平面阴影部分的面积是这类问题的难点。不规则阴影面积常常由三角形、四边形、弓形、扇形和圆、圆弧等基本图形组合而成的,在解此类问题时,要注意观察和分析图形,会分解和组合图形。现介绍几种常用的方法。 一、转化法此法就是通过等积变换、平移、旋转、割补等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。 例1. 如图1,点C、D是以AB为直径的半圆O上的三等分点,AB=12,则图中由弦AC、AD和围成的阴影部分图形的面积为_。 分析:连结CD、OC、OD,如图2。易证AB/CD,则的面积相等,所以图中阴影部分的面积就等于扇形OCD的面积。易得,故。 二、和差法 有一些图形结构复杂,通过观察,分析出不规则图形的面积是由哪些规则图形组合而成的,再利用这些规则图形的面积的和或差来求,从而达到化繁为简的目的。 例2. 如图3是一个商标的设计图案,AB=2BC=8,为