拉格朗日乘子法约束优化问题的标准形式为:约束优化算法的基本思想是:通过引入效用函数的方法将约束优化问题转换为无约束问题,再利用优化迭代过程不断地更新效用函数,以使得算法收敛。1. 罚函数法罚函数法(内点法)的主思想是:在可行域的边界上筑起一道很高的“围墙”,当迭代点靠近边界时,目标函数陡然增大,以示惩罚,阻止迭代点穿越边界,这样就可以将最优解“挡”在可行域之内了。它只适用于不等式约束:它的可行域为:对上述约束问题,其其可行域的内点可行集的情况下,引入效用函数:、其中或算法的具体步骤如下:给定控制误差,惩罚因子的缩小系数。步骤1:令,选定初始点,给定(一般取10)。步骤2:以为初始点,求解无约束其中或,得最优解 步骤3:若,则为其近似最优解,停;否则,令,转步骤2.2. 拉格朗日乘子法(1)算法:(约数为等式的情况引入)效用函数为判断函数为当时迭代停止。步骤1:选定初始点,初始拉格朗日乘子向量,初始罚因子及其放大系数,控制误差与常数,令。步骤2:以为初始点,求解无约束