【考试大纲要求】1理解直线的斜率的概念,掌握两点的直线的斜率公式掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线的方程 2掌握两条直线平行与垂直的条件和点到直线的距离公式;能够根据直线的方程判断两条直线的位置关系 4了解解析几何的基本思想,了解坐标法5掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.6掌握直线与圆的位置关系的判断方法,能利用直线和圆的位置关系解决相关问题.直线方程考察的重点是直线方程的特征值(主要是直线的斜率、截距)有关问题,可与三角知识联系;圆的方程,从轨迹角度讲,可以成为解答题,尤其是参数问题,在对参数的讨论中确定圆的方程【基础知识归纳】1直线方程(1)直线的倾斜角 直线倾斜角的取值范围是:.(2)直线的斜率.倾斜角是90的直线没有斜率;倾斜角不是90的直线都有斜率,斜率的取值范围是(,+).(3)直线的方向向量设F1(x1,y1)、F2(x2,y2)是直线上不同的两点,则向量=(x2x1,y2y1)称为直线的方向向量向