直线与圆的方程综合题、典型题、高考题主讲:曹老师 2012年4月301、已知,直线:和圆:(1)求直线斜率的取值范围;(2)直线能否将圆分割成弧长的比值为的两段圆弧?为什么?解析:(1)直线的方程可化为,直线的斜率,因为,所以,当且仅当时等号成立所以,斜率的取值范围是 (2)不能由(1)知的方程为,其中圆的圆心为,半径圆心到直线的距离 由,得,即从而,若与圆相交,则圆截直线所得的弦所对的圆心角小于所以不能将圆分割成弧长的比值为的两段弧2、已知圆C:,是否存在斜率为1的直线l,使l被圆C截得的弦AB为直径的圆过原点,若存在求出直线l的方程,若不存在说明理由。解析:圆C化成标准方程为假设存在以AB为直径的圆M,圆心M的坐标为(a,b)由于CMl,kCMkl= 1 kCM=,即a+b+1=0,得b= a1 直线l的方程为yb=xa,即xy+ba=0CM=以AB为直径的圆M过原点,把代入得,当此时直线l的方程为xy4
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。