相似三角形法 解决动态平衡问题首先选定研究对象,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化转化为三角形边长的大小变化问题进行讨论。例题1 如图所示,杆BC的B端铰接在竖直墙上,另一端C为一滑轮,重力为G的重物上系一绳经过滑轮固定于墙上A点处,杆恰好平衡,若将绳的A端沿墙向下移,再使之平衡(BC杆、滑轮、绳的质量及摩擦均不计),则()A. 绳的拉力增大,BC杆受压力增大B. 绳的拉力不变,BC杆受压力增大C. 绳的拉力不变,BC杆受压力减小D. 绳的拉力不变,BC杆受压力不变思路分析:选取滑轮为研究对象,对其受力分析,如图所示。绳中的弹力大小相等,即T1T2G,T1、T2、F三力平衡,将三个力的示意图平移可以组成封闭三角形,如图中虚线所示,设AC段绳子与竖直墙壁间的夹角为,则根据几何知识可得,杆对绳子的支持力F2Gsin ,当绳的A端沿墙向下移时,增大,F也增大,根据牛顿第三定律,BC杆受压力增大。图中,矢量三角形与几何三角形ABC相似,因此,