指数型数列-类等比放缩法原理:由 可以得到: 从而可以构造类等比的通项公式进行放缩。从而有以下三种放缩度的控制 (从开始放) (从开始放) (从开始放)1、 设,证明:2、(技巧积累:浓度不等式)设,3、,。证明:4、求证: 5、(类等比数列放缩法 技巧积累:如何进行化简整理出类公比 ) 已知数列的首项为,前项和为,且对任意的,当n2时,an总是3Sn4与2Sn的等差中项()求数列an的通项公式;()设,是数列的前项和,求;()设,是数列的前项和,试证明: 6.(技巧积累:类等比放缩,浓度不等式)设数列的前项和为,满足,且成等差数列。 (1)求的值;(2)求数列的通项公式。(3)证明:对一切正整数,有
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。