线性代数各章节性质定理公式总结(共18页).doc

上传人:晟*** 文档编号:7027453 上传时间:2021-09-17 格式:DOC 页数:18 大小:1.51MB
下载 相关 举报
线性代数各章节性质定理公式总结(共18页).doc_第1页
第1页 / 共18页
线性代数各章节性质定理公式总结(共18页).doc_第2页
第2页 / 共18页
线性代数各章节性质定理公式总结(共18页).doc_第3页
第3页 / 共18页
线性代数各章节性质定理公式总结(共18页).doc_第4页
第4页 / 共18页
线性代数各章节性质定理公式总结(共18页).doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确 :全体维实向量构成的集合叫做维向量空间. 关于:称为的标准基,中的自然基,单位坐标向量;线性无关;任意一个维向量都可以用线性表示.行列式的定义 行列式的计算:行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.若都是方阵(不必同阶),则(拉普拉斯展开式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.关于副对角线: (即:所有取自不同行不同列的个元素的乘积的代数和)范德蒙德行列式:矩阵的定义 由个数排成的行列的表称为矩阵.记作:或伴随矩阵 ,为中各个元素的代数余子式. 逆矩阵的求法: : 方阵的幂的性质: 设的列向量为,的列向量为,则 ,为的解可由线性表示.即:的列向量能

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 公文范文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。